Totally real embeddings with prescribed polynomial hulls
نویسندگان
چکیده
منابع مشابه
Totally Skew Embeddings of Manifolds
We study a version of Whitney’s embedding problem in projective geometry: What is the smallest dimension of an affine space that can contain an n-dimensional submanifold without any pairs of parallel or intersecting tangent lines at distinct points? This problem is related to the generalized vector field problem, existence of non-singular bilinear maps, and the immersion problem for real projec...
متن کاملPolynomial hulls and positive currents
We extend the Wermer’s theorem, to describe the polynomial hull of compact sets lying on the boundary of a smooth strictly convex domain of Cn. We also extend the result to polynomial p-hulls and apply it to get properties of pluriharmonic or p.s.h. positive currents. RÉSUMÉ. Nous décrivons à la suite des travaux de Wermer, l’enveloppe polynomiale des ensembles compacts contenus dans le bord d’...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملSome Results on Polynomial Numerical Hulls of Perturbed Matrices
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.
متن کاملPolynomial Hulls and an Optimization Problem
We say that a subset of C n is hypoconvex if its complement is the union of complex hyperplanes. We say it is strictly hypoconvex if it is smoothly bounded hypoconvex and at every point of the boundary the real Hessian of its defining function is positive definite on the complex tangent space at that point. Let Bn be the open unit ball in C . Suppose K is a C compact manifold in ∂B1 × C , n > 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2019
ISSN: 0022-2518
DOI: 10.1512/iumj.2019.68.7603